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Previous results concerning the effects of axial velocity on the motion of vortex 
filaments are reviewed. These results suggest that a slender-body force balance 
between the Kutta-Joukowski lift on the vortex cross-section and the momentum 
flux within the curved filament will give some insight into the behaviour of the 
filament. These simple ideas are exploited for both a single vortex filament and a 
vortex pair, both containing axial flow. The stability of a straight vortex filament 
containing an axial flow to long wave sinusoidal displacements of its centre-line 
is investigated and the stability boundary obtained. The effect of axial flow on the 
stability of a vortex pair is explored. It is shown that to lowest order (in the ratio 
of vortex core radius to distance between the vortices) the effect of axial flow is to 
reduce the self-induced rotation of a single filament and that this effect can be 
considered as a change in effective core radius. To the next order, travelling waves 
appear in the instability, the instability mode for the vortex pair becomes non- 
planar but the amplification rate of the instability is not affected. 

1. Introduction 
Recent concern over the hazard presented by the trailing vortex system pro- 

duced by large subsonic jet aircraft has stimulated interest in tip vortex flow fields 
and their resulting motion, stability and persistence. One of the most striking 
features of the tip vortex flow, as observed in flight tests by marking the trailing 
vortex of an aircraft with smoke from a stationary tower, is a strong axial flow 
within the vortex core. (In most cases, this flow seems to be directed towards the 
aircraft.) More generally, vortex flows with axial velocities are a familiar occur- 
rence in many aeronautical and geophysical situations. It is therefore of interest 
to examine the effects of axial velocities upon the motion and stability of a vortex 
filament. 

The purpose of this paper is to demonstrate that some rather simple ideas of 
force and momentum flux -in the spirit of slender-body theory - can provide 
an understanding of the effects of axial flow upon the dynamics of a vortex fila- 
ment of small cross-section; small in the context of slender-body theory means, of 
course, small by comparison to the local radius of curvature of the filament or t o  
the wavelength of the perturbation. The results obtainedagree with more complex 
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and complete theories and are expected to be of general usefulness in studies of 
vortex motion. 

The restriction to long waves suggests that the phenomena of vortex break- 
down is outside the range of the present model. The stability of a vortex to short 
wavelength perturbations would have to be analyzed (probably numerically) 
for each particular distribution of axial and swirl velocities within the core. Such 
a calculation for a particular vortex containing axial flow was presented by 
Bergman (1969). (These results will be discussed in $2.) 

The motion of a vortex filament without axial flow has been of fundamental 
interest since the nineteenth century. Kelvin determined the self-induced motion 
of both a vortex ring and an initially straight sinusoidally perturbed vortex 
filament assuming a core of uniform vorticity. The radius of the core a is required 
to be small by comparison to the radius R (ring) or the wavelength h (sinusoid). 
More recently, Saffman (1970) presented the general result for the self-induced 
velocity of a vortex ring with an arbitrary distribution of vorticity within the 
core (again alR < 1) based on an energy theorem. 

For the study of the stability of the vortex pair, such as in an aircraft wake, the 
solution presented by Kelvin for the self-induced motion of a vortex filament of 
uniform vorticity subjected to a sinusoidal displacement of its centre-line is of 
fundamental importance. He showed that this filament would rotate without a 
change of shape about its unperturbed position with an angular velocity given by 
(Thomson 1910a, b)  

where F is the circulation, k the perturbation wave-number and y is Euler's 
constant. 

The analysis of the stability of a pair of vortex filaments was presented by 
Crow (1970). He considered the mutual interaction of a pair of such sinusoidally 
perturbed vortex filaments separated by a distance b. To the self-induced motion 
given by (I. 1) was added the velocity induced at the vortex by the presence and 
deformation of the other vortex. (Details of this calculation will be discussed in 
$3. )  For a range of wavelengths, the resulting motion of the filaments is an 
exponential divergence occurring on two tipped planes a t  an angle of about 45'. 
The most unstable wavelength is h = 8.4b for a vortex core radius a = 0 - l b ,  a 
typical value for aircraft. The general features of the basic vortex pair instability 
are sketched in figure 1. 

Since to lowest order (in ka and a/b)  the induced velocity of one vortex upon 
the other is insensitive to the presence of axial flow within the vortex core, the 
effect of axial flow upon the stability of a vortex pair is found by examining the 
self-induced motion of a perturbed vortex filament containing axial flow. 

Recently Widnall, Bliss & Zalay (1970) presented an analysis (hereafter 
referred to  as I) of the effects of axial flow upon the self-induced motion of a 
sinusoidally perturbed vortex filament. Results were also presented for the 
propagation velocity of a vortex ring containing an axial flow - a most unlikely 
but interesting situation. In  this analysis the method of matched asymptotic 
expansions was used to obtain a general result for the self-induced motion (and the 
other flow quantities) of a vortex filament with an arbitrary distribution of axial 

Q,, = (l?/4n)k2[-ln(ka)+~+ln2-y], (1.1) 
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and swirl velocities. The perturbation analysis required ka < 1 and W I V  at most 
O( 1) where w is axial velocity and v is swirl velocity. 

The result obtained in I for the propagation velocity of a vortex ring without 
axial flow is identical to the result presented by Saffman (1970). The velocity is 

FIGTJRE 1. General features of the vortex pair instability. The particular 
instability mode sketched is the symmetric mode. 

where the constant A depends only upon the details of the vorticity distribution; 
e.g. if the vorticity is uniform A = a. The constant A is defined by the expression 

where r is a local cylindrica1radiusat;thevortex filament. A is related to the kinetic 
energy of the vortex. The total kinetic energy of a vortex is infinite; A is finite. 

When the effects of axial velocity are included in the analysis (I) it is still 
possible to obtain the solution analytically. The expression for the velocity of the 
vortex ring containing axial flow is 

U = UO-Iom 2nrw2dr/RI'. (1.4) 

This result has a very simple physical interpretation. To contain the momentum 
flux (the integral) within the vortex core, an inward force, acting upon the 
filament, of magnitude 

F = -lom 2nrw2dr/R 

is required. This force is provided by a Kutta-Joukowski lift acting upon the 
22 F L M  50  
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vortex cross-section whenever the velocity of the ring differs from the equilibrium 
U,. The lift on the filament is r( u - u,). 
A combination of (1.5) and (1.6) confirms that the ring slows down to provide the 
lift force necessary to contain the internal flow. (This result, of course, has 
limitations: it is unlikely that the ring would ever reverse its direction, and it is 
also obvious that the ring would be unable to contain the axial flow as the flow 
velocity becomes large. The ring would probably become unstable.) 

This simple force/momentum flux balance confirms the result of (1.4) obtained 
in I by a rather lengthy analysis (and a fortuitous solution, by inspection, of the 
perturbedvorticity equations). This suggests that an understanding of the motion 
and stability of vortex filaments containing axial flow may be obtained by an 
application of some rather simple ideas of lift on a vortex cross-section and 
momentum flux in a perturbed cylindrical duct by means of slender-body theory, 
which is valid for ka < 1, an approximation already inherent in most treatments 
of vortex filaments. 

In  the analysis (I) of the effects of axial flow upon the self-induced motion of a 
perturbed sinusoidal filament a similar result was obtained. The presence of axial 
flow slows down the rotation by the amount which provides the necessary lift on 
the vortex filament to turn the internal axial flow. This problem is, however, more 
complex in that the presence of axial flow within a rotating sinusoidal filament 
requires a balancing Coriolis force which induces travelling waves upon the 
filament to provide the necessary lift force. The role of the travelling waves in the 
diverging vortex pair instability is not obvious; in fact the sorting out of the 
effects of rotation and axial flow was the motivation for the development of the 
slender- body theory. 

Another motivation was the interest in the stability of the vortex as the axial 
velocity becomes very large, i.e. as the vortex becomes a jet. The stability of a 
jet was studied by Batchelor & Gill (1962). Their results indicate that the sinuous 
mode (n = & 1)  is always unstable for sufficiently long waves. The long wave jet- 
vortex model should reduce t o  the jet as the swirl velocity goes to zero. 

The previous analysis (I) was formulated for the case that the axial velocity 
was -at most - as large as the swirl velocity (as in the aircraft wake). Under these 
conditions, the unsteady effects which play an essential role in the jet instability 
are negligible. The slender-body theory allows these effects to be considered arid 
the time scales identified for inclusion in a more complete perturbation analysis. 

The present analysis will consider both the self-induced motion of a single 
vortex filament and the coupled motion of a perturbed vortex pair. 

(1.6) 

2. Analysis of a single vortex filament 

sketched in figure 2) of the form 
We consider a general sinusoidal perturbation of the vortex filament (as 

r(x) = x(x)i+y(z) j = Zgei(ks+wt)i+yoei(kz+ot)j, (2.1) 
where the amplitude coefficients z,, and yo are assumed to be small. The vortex 
filament contains an axial flow w. For convenience, we will take w as constant 
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across the vortex core although we will indicate how results are obtained for a 
general distribution. 

To obtain the effect of axial flow upon the motion and stability of this vortex 
filament we apply a slender-body force balance in each x, y plane. The vortex 
filament is treated as a deformed cylindrical shell containing an internal flow. The 
total force on the cylindrical cross-section is taken as the Kutta-Joukowski lift 
produced whenever the motion of the filament differs from the self-induced 

FIQURE 2. Slender vortex filament containing an axial flow. 

motion of a vortex filament without axial flow, which, in the limit ka+O, can 
support no lift. The remaining terms in the force-momentum balance are due to 
the hydrodynamic mass of both the external and internal fluids - this is a matter 
of taste since these terms could as well be considered forces. Beyond its role in 
the generation of lift, the external fluid may be replaced by an equivalent hydro- 
dynamic mass na2. (See appendix A for a detailed discussion of the use of hydro- 
dynamic mass in a flow with circulation.) The hydrodynamic mass of the internal 
fluid is also ma2; the effect of axial flow enters through the expression for the 
absolute acceleration of the internal fluid. 

For a given wave-number k (real), the force balance results in a pair of coupled 
homogeneous algebraic equations for the coefficients xo and yo; the equations also 
contain the eigenvalue w .  Instability occurs whenever w has a negative imaginary 
part. An eigenmode zo cc yo is a planar sinusoid. The mode zo = f iy ,  is a helix of 
counter-clockwise or clockwise sense. 

We now present the details of the slender-body force balance €or the single 
vortex filament sketched in figure 2. The position of the vortex cross-section in an 
x, y plane is r(z), given by (2.1), as indicated in the insert sketch. The velocity of 
the cross-section is 

t ( z )  = iwr(z). ( 2 . 2 )  
22-2 
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Since the general deformation is made up of elementary sinusoidal displacements, 
to lowest order in the amplitude the filament will rotate about the x axis with 
angular velocity Qo, see (l.l), if there is no axial flow within the core; this can 
also be verified by a detailed integration of the Biot-Savart law taking proper 
account of the finite vortex core. (If the vorticity within the core is not uniform, 
the in (1.1) is replaced by the oonstant A as defined by (1.3).) 

The lift force on the vortex cross-section is 

L = l?k x [P - V,], (2.3) 
where V, = - Q,[yi-xj], a rigid rotation at  an angular velocity Qo, see (1.1). 
Thus if the velocity of the vortex i. equals V,, no lift is produced. 

The time derivative of the momentum in the external fluid N, replaced by its 
equivalent hydrodynamic mass nu2 is 

dM,/dt = nra2d2r/dt2. (2.4) 
The equivalent expression for the internal fluid contains the substantial deriva- 
tive to account for the acceleration of the moving fluid. 

dM,ldt = na2D2r/Dt2, (2.5) 
D p t  = ajat + w ajax. where 

(If the velocity within the core is not uniform, the slender-body analysis should 
still be valid if the momentum flux m 2 w 2  is replaced by 

and the mass flux na2w is replaced by 

JOm 2 m w  dr.  

Such a calculation appears in appendix B.) 
Equating the lift force (2.3) to the sum of (2.4) and (2.51, we obtain 

d2r D2r I’ 
dt2 Dt2‘ ma2 
-+- =-kx[?-V,]. 

If the vorticity is uniform, r /2na2 equals Q, the angular velocity of the vortex 
core. (Both I? and Q will be taken as positive as sketched in figure 2.) In  any case, 
we will use Q to non-dimensionalize w and kw, introducing 

u = w / Q  and S = k w / Q .  (2.7), (2.8) 

For convenience in obtaining the eigenvalues and eigenmodes, the final equations 
for xo and yo are expressed in matrix notation 

[C](”O} = 0. 
Yo 

(2.9) 

The matrix C, obtained from (2.6) and the definitions (2.7) and (2.8), is 

u2+ u#+ 4 8 2 -  $(ka)2K - iu 
iu g 2  + us + i s 2  - 4 rc1 = [ 

where K =  -2Qo/Q(ak)2 = [-ln(ka)+A+ln2-y]. 
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The eigenvalues are found by setting the determinant of C equal to zero. The 
eigenmodes are then determined by solving either of the two equations in (2.9). 
The determinant of C gives a quartic for CT. However, it can be seen by inspection 
that the eigenmodes are xo = & iy, and that the quartic can be factored. 

[az + aX+ $S2 - B(ka)W - CT] [r2 + d+ &S2- a ( k ~ ) ~ K  + CT] = 0. (2.11) 

For x = iy ,  (a helix of counterclockwise sense) the eigenvalue (r+ is 

cr+ = -$(X- 1)-&(1-2s-X2+2(k@K)3; (2.12) 

the root of the quadratic is chosen so that at X = 0 

CT+ = w / n  = i.l0/Q. (2.13) 

This modes becomes unstable for 

S > { 2 (  1 + (ka)ZK)}t - 1 z 24 - 1 + 2-*(ka)2K (2.14) 

or, since ka Q 1, for 8 < 24- 1. For xo = - i yo  (a helix of clockwise sense), the 
eigenvalue CT- is 

CT- = - &( X + I )  + +( 1 + 2X - S2 + 2( k ~ ) ~ K ) t .  (2.15) 

This mode becomes unstable for 

X > {2(1+ (ka)ZK)}++ 1 (2.16) 

or approximately X > 24 + 1, a larger value of 8 than for the x, = iy, mode. 
The parameter S ,  see (2.8), which determines the stability for a vortex con- 

taining an axial flow may be rewritten using C2 = via where v is the swirl velocity 
at  the core radius a if the vorticity is uniform, otherwise v is a typical swirl 
velocity. Instability occurs whenever 

(ka)w/v > 24- 1. (2.17) 

Since the slender-body analysis is restricted to ka < 1, the instability of a single 
vortex containing an axial flow in the limit ka B 1 occurs for w v. This in- 
stability is not likely to be important in the tip vortex flow field where the axial 
velocities are of the same order as the swirl velocities, but it may occur in other 
vortex flow situations. As the swirl goes to zero, the vortex with axial flow 
becomes a jet. In this limit (i2-t 0 ,  #-+a) the eigenvalues become 

CT = w / Q  = - (kw/2Q) & &i(kw/sZ) 

w = - #w f $i(kw). 

(2.18) 

or 

This result agrees with that given by Batchelor & Gill (1962) for a jet with 
uniform axial velocity w as ka-t  0; the wave speed of the jet instability is iw ,  the 
amplification rate wi is ikw.  

For ka - O( l), the stability analysis of vortex containing an axial flow would 
have to be carried out for each particular distribution of axial and swirl velocities. 
Bergman (1969) reported such a calculation for a meteorogically interesting 
vortex. Although he anticipated that his numerical results would show stability 
as the axial flow diminished, in fact this did not occur. In  appendix B we calculate 
the long wave stability boundary for the particular mass and momentum flux 
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distributions in his vortex. The axial velocity and circulations distributions €or 
this particular vortex are shown in figure 3 (along with a simple function which 
we shall use to approximate the circulation distribution). 

r/a 

FIGURE 3. Initial axial velocity and circulation distribution in Bergman’s 
stability calculation. x - - - x , exponential fit to circulation profile. 

0 2 4 6 8 10 12 14 16 

,u 

FIGURE 4. Contours of constant amplification rate hi (from Bergman 1969) for the helical 
mode of a single vortex containing an axial flow as a function of wave-number and swirl 
parameter, ,u = r /aw,  where h, = Im{a}p/27r. Cross-hatoh curves show the long wave 
stability boundary, A, = Im{cT} = 0, for two different vorticity distributions. 

Figure 4, taken from Bergman’s paper, shows contours of constant amplifica- 

A, = Im{cr},u/%r 

tion rate hi as a function of ka and ,u; the parameter ,U is proportional to ku,/S; 

(see appendix B). The slender-body stability boundary (B 7 )  is 

,U = 8 7 ~ k ~ / {  1 + 2 ( k ~ ) ~ K ) ,  
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where K 2i [ - In (ka) - 0.391 for the particular vorticity distribution; this is 
superimposed upon his results in figure 4. Below this boundary the flow should 
be stable; the reason for the discrepancy is not known. The analytic form of the 
long wave stability boundary may be useful in future numerical investigations 
of vortex stability. If both the upper (short wave) and lower (long wave) stability 
boundaries are correct, a rather complete picture of the stability of a vortex 
containing an axial flow to sinusoidal displacements of its centre-line is obtained. 

In a parallel investigation, Moore & Saffman (1971) formulated the linearized 
perturbation problem for waves of amplitude smaller than the core size on a 
vortex of uniform vorticity containing a uniform axial flow. In  this case the 
resulting equations for both the internal and external fluid are (different) forms of 
Bessel's equation. In the long wavelength limit the stability boundary is essen- 
tially that predicted by the slender-body model (2.14), (2.16). 

It is of some interest to combine the two eigenmodes (if both are stable) to 
form a pla,nar sinusoidal mode. In  the general case the planar sinusoidal wave will 
travel as well as rotate. 

The eigenmodes can be written 

and 
(2.19) 

These results were derived with the implicit assumption that the wave-number k 
was positive. For negative k (and therefore negative S )  

(2.20) 

(2.21) 

The general form of a planar travelling rotating sinusoidal mode is 

r = eiUrQt[ii + j] [ei(ks+U@t) + e-i(kS+btQt) I, (2.22) 

where a, is the rotational frequency (the mode rotates counterclockwise if a,, 
is positive) and - at S2/k is the phase speed of the travelling wave. It can be seen 
by inspection that this mode is the sum of r+ from (2.19) and r- from (2.21). The 
rotational and translational frequencies ar and ut are given by 

a, + ar = a+, at - a; = u- (2.23) 

or at = &(cT++a-), ay = +(a+-c ) .  

The rotational frequency of the planar mode then becomes 

a,, = 4 -a( 1 - 25- S2 + 2 ( k ~ ) ~ k ) & -  f (1  + 2 s -  S2 + 2 ( k ~ ) ~ k ) 3 .  (2.24) 

For small S, the rotational frequency is 

a, w -+[(ka)2K-S2]. (2.25) 
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This result agrees with the analysis of I; the effect of axia.1 velocity is to slow the 
rotation of the planar sinusoid. The phase speed of travelling waves along the 
filament for small S is 

c = - ut Q / k  z awS2 = tw(ka)2 [w/v]z. (2.26) 

When the axial and swirl velocities are of the same order, as in an aircraft 
wake, the travelling wave speed is very small being O(w(ka)2); the lift producing 
capability of the filament suppresses travelling waves. 

3. The vortex pair instability 
The coupled pair instability is shown in figure 1. I n  the absence of axial flow, 

the instability mode of each vortex is planar; the amplitude grows exponentially 
in time (Crow 1970). Working in a co-ordinate system fixed with the descending 
pair, we will take the more general form (2.1) for the assumed perturbation of the 
vortex which allows for the possibility of both travelling waves and n o n - p h a r  
deformations. 

The required modification to the force balance of $ 2  for a pair of vortex fila- 
ments is to  include the forces induced by the presence and deformation of the 
other vortex. Both the velocity and pressure fields due to the other vortex induce 
forces on the vortex cross-section. Of these, the most important is the Kutta- 
Joukowski lift force, the product of circulation and the induced velocity due to 
the other vortex. (This, of course, is largely balanced by the lift due to the resulting 
motion of the vortex.) The net force on the vortex cross-section due to the pres- 
sure field is caused primarily by the unsteadiness of the induced velocity field as 
the instability proceeds. This term makes only a small change in the stability 
boundary of the jet-vortex, as will be seen. 

The dcformations of the two vortices are 

(3.1) 

(3 .2 )  

r = x ei(kZ+wt) i + y ei(kZ+Wt) j 
0 0 

for the vortex in question, and 
r = x ei(kZ+wt) i + y ei(kz+ot) j 

1 1 

for the other vortex. The general instability can be represented as a combination 
of modes, the symmetric (xl = - xo, y1 = yo) and the antisymmetric (xl = xo, 
y1 = - yo). To first order in the amplitude of the deformation, the inducedvelocity 
vi a t  the position of the vortex r due to  the other vortex is the sum of v,, the 
velocity at the perturbed position of the vortex due to  the other vortex in its 
unperturbed position and vl, the induced velocity due t o  the deformation of the 
other vortex. In  the neighbourhood of the vortex cross-section vo is a local steady 
but non-uniform flow given by 

(3.3) 

a local two-dimensional potential ‘corner flow’, a flow with uniform strain. In  
the neighbourhood of the vortex cross-section, v1 is a local free stream of magni- 

vo = ( F / 2 d 2 )  [yo i + xo j] ei(kz+wt), 

tude r 
v1 = 2nb2 [yl[ - ( k t ~ ) ~ K , ( k b )  - (kb)K,] i -x , [ ( lcb)K,(kb)l  j] ei(kz+wt), (3.4) 
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where K ,  and KO are modified Bessel functions of the second kind; y1 and x, are 
the amplitude coefficients of the deformation of the other vortex (3.2). If the 
amplitude of the deformation grows, v, is an accelerating free stream. The 
derivations of (3.3) and (3.4) appear in the analysis of Crow (1970). The total 
induced velocity v1 is then written 

r 
v - - -[[IT 2nb2 Y ] y , i + [ l  &X]x , j ] e~("+~t ) ,  (3.5) 

where the notation 
X = (kb)2Kl,  Y = (Icb)2Ko+ (kb)K, 

has been introduced. The upper sign is taken for the symmetric mode, the lower 
sign for the antisymmetric mode. 

The forces induced by the presence and deformation of the other vortex are 
now calculated. In  appendix A the total force on a cylindrical cross-section with 
circulation moving through the flow field of (3.3) is shown to be the sum of the 
Kutta lift, the inertial force due to the hydrodynamic mass and the pressure 
force required to hold the cylinder in place. Unsteady effects due to moving about 
in a non-uniform flow cancel. 

Of most importance is the lift force acting on the vortex cross-section due to 
the induced velocity vi. Referring to the insert sketch in figure 2, we see that if an 
external velocity field vi is added to the flow of the single vortex filament, the 
total lift force on the vortex cross-section (2.3) becomes 

L = Pk x (f-vn-vi].  (3.6) 

The total flow at the cylinder due to the other vortex consists of the uniform 
straining flow (3.3) and the accelerating free stream (3.4). The force required to 
hold the cylinder in place in the uniform straining flow is 

F = 2na2( 1?/2nb~)~  [xi + yj] .  (3.7) 

F = 2na2dv,/dt. (3.8) 

The force on the cylinder in the accelerating stream is 

The total force on thevortex cross-section - beyond effectsdue to hydrodynamic 
mass-is the sum of (3.6), (3.7) and (3.8). 

F = 2na2Qk x [I?- v, - vi] + 2na2wiv, + 2na2[Q(a/b)2]2r, (3.9) 

where I' has been replaced by 2na2Q. 
The first term in (3.9) dominates; the second term, of higher order by a2/b2, is of 

minor importance; the last term, O((a/b)4),  is negligible and will not be included 
in the analysis. The total force (3.9) is equated to the time derivative of fluid 
momentum in and near the single filament, the sum of (2.4) and (2.5). The form 
of the stability problem for the vortex pair is the same as for a single filament 
(2.9) with the additional force terms now included in the matrix C.  For the 
coupled vortex pair instability, C becomes 

A - a2- aS- (a/b)2 [l  rf: XI  ia[l ( c c / ~ ) ~ Y ]  
= [ - ia[l rf: ( a / t ~ ) ~ X ]  A - a 2 - d + ( a / b ) 2 [ 1  T Yll 7 (3.10) 
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where A = 8{(ka)2K - S2} (recall that plus is taken for the symmetric, minus for 
the antisymmetric mode). For the single vortex case b+m, (3.10) reduces to 

A jet instability would be expected for the vortex pair as the axial velocity 
becomes very large, S N O(1). Under these conditions the time scale a will be 
O(1). The presence of the other vortex would affect this instability only slightly, 

However, for the case that the axial velocities are of the same order as (or 
smaller than) the swirl velocities, 8 is O(ka),  (ka)  < 1. The appropriate scaling for 
the eigenvalue a is then 

0- = € 2 3 ,  (3.11) 

where e = a/b and 5 is O( 1). The eigenvalue problem for 5, obtained from (3.10) is 

= 0,  (3 .12~)  

(3.12 b )  where 

To obtain a simple approximate solution, the eigenvalue a is expanded in a 
perttirbation series 

(3.13) 

(this is valid away from multiple roots), When (3.13) is substituted into (3.12), the 
following equations for go, g1 and g2 are obtained: 

(2.10). 

to O(aZ/b'). 

1 ( kb)2 G - [ 1 f XI - ~ g k b a  - ~~a~ ig[l* €2Y] 

- ia[1 f €2X] ( k b ) ' G + [ l T  Y ] - E C T ~ ~ U - & T ~  
a = w/v = w/Qa and G = [&(K-a2)]. 

[ 

- 
g = a, + €F1 + € 2 3 ,  

(3.14) i 
- g; = - [(I f X )  - (kb)'G] [l T Y + (kb)'G], 

5, = +kba[ & X T Y - 2(kb)zG], 
5, = ( 1 /2F0) [ - 5; [2( kb)' G + (kb)' a] + 53. 

The lowest-order term in F(Fo)  is the eigenvalue associated with the aircraft wake 
stability problem as formulated by Crow for a vortex pair without axial flow and 
as modified in I to include arbitrary distribution of axial and swirl velocity. 
When the flow is unstable, go is purely imaginary; the instability is a simple 
divergence. To lowest order, the eigenmode is 

Id 
zo = [l f X - (kb)ZG] (3.15) 

a planar mode. 
In  I, it was shown that the results obtained by Crow (1970) for the stability 

of a vortex pair with uniform vorticity in the core can be used for an arbitrary 
distribution of swirl and axial velocity (which affects only G )  if an effective core 
radius 

a, = a exp($-A+aZ) (3.16) 

is taken. With this definition, G ,  from (3.12 b) ,  becomes 

G = ~ [ - l n ( k u , ) + ~ + l n 2 - ~ ] ,  (3.17) 

i.e. the ' G ' for a vortex core of radius a,, with uniform vorticity and no axial flow; 
a, then incorporates the effects of axial and swirl velocity distribution. Some 
general features of this instability are shown in figures 5 and 6. Figure 5 shows the 
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stability boundaries for the symmetric mode as a function of wavelength h / b  and 
effective vortex core radius a,/b; the curve in the centre of the instability region is 
the most unstable wavelength. Figure 6 shows To for the most unstable wave as a 
function of a,/b. 

I I I I I I 

10 

8 

6 
h 

4 

I Stable 

2 

OO 0.1 0.2 0.3 

FIGURE 5. Stability diagram for the vortex pair. The cross-hatched lines show the stability 
boundaries; the solid curve shows the wavelengths of maximum amplification for each 
a& The upper ourve shows the most unstable long wave, the lower curve the most 
unstable short wave. 

The correction to the eigenvalue 5, is always real and for conditions of insta- 
bility probably always positive (as checked numerically). 5, gives no additional 
contribution to the amplification rate of the instability but introduces travelling 
waves into the eigenmode. When the self-induced rotation, (kb)2 G ,  dominates 
(typically - though not always - when the vortex is stable), the waves travel in the 
direction of the axial flow; when the vortex is unstable the waves travel in the 
direction opposed to the axial flow. The physical reason for this is not yet under- 
stood. 

An expression for the wave speed, c = - w / k ,  can be obtained by working back 
through the non-dimensionalization introduced in (2 .7 ) ,  (3.11), (3.13) to give 

c = w(a/b)' [ _+ X F Y - 2(kb)'G]; (3.18) 

the wave speed is then O((a/b)2)  times the axial velocity w. Another interesting 
feature of the solution to this order is the eigenmode, 

- a0 - GI xo = 
(1 & X - (kb)2 G - ekbauO) 

(3.19) 
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The general form is x, = Ay, + ieBy,; the mode is predominately planar with a 
small helicity. Seen from on edge it would be slightly elliptical. Thus to the order 
that travelling waves appear, the mode is no longer planar. 

Long waves 

Y 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

a@ 

FIGURE 6. Amplifioation rate of the most unstable wave for the vortex pair instability. 
Long and short wave branches of this curve give the amplification rates for the long and 
short wave instability modes from figure 5. 

The correction 5, is again always imaginary and represents a correction to the 
amplification rate. Since 8o is negative imaginary for conditions of insta- 
bility 5, is always positive in these cases. It therefore represents a reduction of 
the amplification rate. 

When the axial velocity becomes much larger than the swirl velocity, the 
instability of a vortex pair should differ only slightly from that of a single fila- 
ment. Since CT is now O( 1)) the appropriate form of the eigenvalue problem from 
(3.10) is 

(3.20) 

where E is again alb. For E = 0, the eigenvalues CT are given by (2.12) and (2.13); 
the stability boundary (2.14) is X 24 - 1 + (ka)ZK/24. We will investigate the 
effect of the other vortex on this stability boundary. Since the stability boundary 
occurs at a double root u = CT, f 0, the perturbation is not as straightforward as 
the previous case. For this case, we will perturb S as well as c and find the new 
stability boundary as a function of E .  

A-CT2-d-€2[1 +XI i g [  1 e2 Y] 
- iCT[ 1 & €2X] A-Cr2-vS+E2[1 T Y ]  l = o ,  

Define 
s = so + E2& 

where So = 26 - 1 + (ka)'K/26. (3.21) 
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A t  E = 0, S = So; the eigenvalue is 

c, = *(1-S,). 

To O(e2),  the determinant of (3.20) may be written 

(3.22) 

~ o ( + - ~ 2 ~ ~ o - + ~ O ~ - j  [~~s,+~s,s ,+xT Y I  + E ~ [ Y - x x ] c ~ ~  = 0, (3.23) 

where fo(a) is the polynomial in c obtained from (3.23) for e = 0, and 

the value of A at S = 8,. 
At the stability boundary (g = go) fo(c) has a double root; therefore near 

c = IT,, 

f o ( 4  = (c- floo)2 ( g o  - go,) ( g o  - (702) )  (3.24) 

where go, and co2 are the two roots of the quadratic for the xo = - iy, mode (2.15). 

~ 0 1 , 0 2  = - *(S + 1) f. *( 1 + 2 8  - s 2  + z(ka)zK)+. (3.25) 

A ,  = * { ( l c a ) 2 K - s ; } ,  

Near the stability boundary, we expand g as 

cr = cr,+€cr,+... . 
To lowest order, (3.23) becomes 

(3.26) 

~ ~ ( c ~ ~ - ~ ~ ~ ) ( ~ ~ - ~ ~ ~ ) - ~ ~ ~ ( ~ u ~ S ~ + ~ S ~ S ~ + X ~  Y )  & ( Y - X ) g ;  = 0. (3.27) 

From (3.27) we obtain 

g1 = - 2-4[ - [(So+ l)Sl T *(3- 8,) ( Y  -X)]lk (3.28) 

The perturbed stability boundary for the slightly coupled jet-vortex pair is 
found by setting g1 = 0 and solving for S,. 

(3.29) 

Since Y - X is always positive, the instability occurs at a lower value of S (axial 
velocity times wave-number) for the symmetric mode and at  a higher value of 8 
for the antisymmetric mode. The difference is, however, rather small since the 
appropriate perturbation (3.21) of the stability boundary is 

S = so + € 2 X 1 .  

4. Conclusions 
The application of slender-body theory to the motion and stability of a vortex 

containing an axial flow to long wavelength sinusoidal displacements of its 
centre-line has provided some new results and an understanding of some results 
obtained by other methods. The new results are: first, a stability boundary for the 
long wave perturbations of a vortex with an arbitrary distribution of swirl and 
axial velocities; second, an ordering - in the small parameter a./b -of the various 
effects of axial flow on the stability of a vortex pair in both the aircraft-wake and 
jet-vortex limits. The slender-body theory also identifies the appropriate time 
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scales for the various instabilities of both a single vortex and a vortex pair; this 
will allow a more complete perturbation analysis to be done. 

The authors wish to thank Philip Saffman for stimulating discussions on many 
aspects of vortex flows. This work was supported by the Air Force Office of 
Scientific Research (OSR) under contract P44620-69-C-0090. 

Appendix A. Force on a cylinder with circulation moving through a 
flow with uniform strain 

To justify the use of the simple expression (in (2.4)) na2 for the hydrodynamic 
mass of the circular cross-section of the vortex filament, it is necessary to show 
that the force on a circular cylinder with circulation moving about in an arbitrary 
(unsteady) manner through a uniform straining flow (which to lowest order 
represents the effect at  the vortex of any non-uniform flow) separates into a 
pressure force due to position in a non-uniform flow, a lift force due to the product 
of circulation and velocity and an inertial force, the product of the hydrodynamic 
mass ma2 times the acceleration of the cylinder. The particular non-uniform flow 
at the cross-section due to the presence of the other vortex has a complex potential 

We consider a cylinder located at the point xo in this flow. We shall work in a 
local co-ordinate system moving with the cylinder at the velocity 2,. (For a 
cylinder, translational motion only need be considered.) 

The complex potential of the flow, expressed in the local complex variable {, is 

To this is added the apparent free stream due to the motion of the co-ordinate 

w ( ~ )  = -igz2r/2+-.  (A 1) 

w(g = ( - ir/2n~) +(g+ xo)2.  (A 2) 

system: 

where lkol is the magnitude and a is the angle between the velocity vector and the 
real axis. A cylinder of radius a, fixed with respect to the moving co-ordinates, is 
inserted by application of the circle theorem (Milne-Thompson 1968). A point 
vortex may also be added at  the centre of the cylinder. The complex potential of a 
cylinder with circulation in a uniform straining flow is then 

where Zo is the complex conjugate of zo. 
The velocity potential, referred to a fixed frame instantaneously coincident 

with the moving frame, is 
$27 = $&I + Re ( I i o  I e-%) I (A 5) 

To calculate the pressure on the cylinder we use the pressure equation referred 

(A 6) 

where $M = ReW(5)I. 

to a moving axis as given by Milne-Thompson (1968), 

P + tq," + V F P t  - 4 p o l  = W), 
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where qr is the velocity in the moving frame. (The density has been taken as 
uiii ty  . ) 

The force is calculated using the extended Blasius theorem (Milne-Thompson 
1968) 

Since the complex potential W(<), which enters in both q? and is purely real 
on the cylinder, some of the integrals in (A 7) may be written as analytic functions 
of the complex variable 5 (or E ) ,  to obtain 

x - i Y  = -i$pdE. (A 7) 

This is evaluated by a straightforward application of Cauchy's integral theorem 
(the last integral is simply evaluated) to give 

The various terms in the total force have very simple interpretations. The effects 
of non-uniformity, circulation and unsteadiness separate. The first term is the 
force required to hold the cylinder in place in the non-uniform flow, the second is 
the Kuttdoukowski lift due to the 'free stream' velocity at  the point xo, the 
third is the Kutta lift due to any motion of the cylinder, the last is the inertial 
force due to the hydrodynamic mass na2. 

One would have expected some cross terms involving a force due to a rate of 
change of position through a non-uniform flow but in fact these cancel. Since the 
circulation is taken as independent of time, there is no effect of circulation on the 
force due to unsteady motion. 

Appendix B. Application of the slender-body theory to an atmospheric 
vortex 

The particular vortex flow studied by Bergman (1969) had an axial velocity 
distribution 

and a distribution of circulation 
w(r) = 2@e4r/a)a (B 1) 

These functions are shown in figure 3. For convenience we approximate the 
circulation profile as 

r p  - 1 - e-(rii-65a)2. 

The axial momentum flux within this vortex is 

(B 3) 0 -  
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and the mass flux is 

S. E. Widnull and D. B. Bliss 

m = lom zn-w(r)rdr = 27r~u2. 

27 = Zk /Q,  

where Q = r , p G 2 .  

We define the parameter 

For the circulation distribution of (B 2 )  the parameter K ,  which determines the 
angular velocity of the filament, is 

K = [ -111 (ku) -In (1-65) - 0.058 +ln 2 -71. 

As shown by Saffmen (1970) and others, A = -0,058 for an exponentially 
decaying vortex; In (1-65) is a correction to account for the characteristic length 
1.65a in (B 3 ) .  

In  terms of the parameter 8,  the long wave stability quadratic ( 2 . 1 1 )  for the 
most critical mode xo = iy,, becomes 

( T ~ + ~ c T S + S ~ - = & ( ~ U ) ~ K - ~  = 0, (B 6) 

the terms involving mass and momentum flux now being larger by a factor of 2. 
The roots of this quadratic are 

cr = -~[2S-l1]+~[(2B-1)2-44B2+2(ka)2K]. (B 7 )  

8 > $ ( 1 + 2 ( k U ) 2 K ) .  (B 8) 

In  this case, instability occurs for 

Bergman presented contours of constant amplifi~at~ion rate A, as a function of 
ka and p, p defined as 

Because he uses a/w rather than 1 / ! 2  as his time scale, his amplification rate hi 
is equivalent to gip/27r, where ( T ~  is the imaginary part of (T, (B 7) .  The stability 
boundary ( T ~  = 0, however, corresponds to A, = 0. p is equivalent to 

= r,law. (B 9) 

p = 27ru2Qk/a~k = 27r(ka)/B. 

p < 87r(ka)/(l+ 2(ku)2K}. 

(B 10) 

(B 1 1 )  

Thus from (B 10) and (B 8 )  the long wave analysis predicts instability for 

This is presented in figure 4 and discussed in 5 2.  
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